
Choosing Best Hashing Strategies

and Hash Functions

Thesis submitted in partial fulfillment of the requirements for the award

of Degree of

Master of Engineering

in

Software Engineering

By:

Name: Mahima Singh

Roll No: 80731011

Under the supervision of:

Dr. Deepak Garg

Assistant Professor, CSED

&

Mr. Ravinder Kumar

Lecturer, CSED

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

THAPAR UNIVERSITY

PATIALA – 147004

JUNE 2009

 i

Certificate

I hereby certify that the work which is being presented in the thesis report entitled,

“Choosing Best Hashing Strategies and Hash Functions”, submitted by me in partial

fulfillment of the requirements for the award of degree of Master of Engineering in

Computer Science and Engineering submitted in Computer Science and Engineering

Department of Thapar University, Patiala, is an authentic record of my own work carried

out under the supervision of Dr. Deepak Garg and Mr. Ravinder Kumar and refers other

researcher’s works which are duly listed in the reference section.

The matter presented in this thesis has not been submitted for the award of any other degree

of this or any other university.

(Mahima Singh)

This is to certify that the above statement made by the candidate is correct and true to the

best of my knowledge.

 (Dr. Deepak Garg)

 Assistant Professor, CSED

 Thapar University

 Patiala

And

 (Mr. Ravinder Kumar)

 Lecturer, CSED

 Thapar University

 Patiala

Countersigned by:

Dr. Rajesh Kumar Bhatia (Dr. R.K.SHARMA)

Assistant Professor & Head Dean (Academic Affairs)

Computer Science & Engineering. Department Thapar University,

Thapar University Patiala.

Patiala.

 ii

Acknowledgement

No volume of words is enough to express my gratitude towards my guide, Dr. Deepak

Garg Assistant Professor. Who has been very concerned and has aided for all the material

essential for the preparation of this thesis work. I would also thankful to Mr. Ravinder

Kumar for his continual support, encouragement and invaluable suggestions towards the

research area. They helped me to explore this vast topic in an organized manner and

provided me with all the ideas on how to work towards a research-oriented venture.

I am thankful to Dr. Rajesh Kumar Bhatia, Head of Computer Science & Engineering

Department Thapar University Patiala and Mrs. Inderveer Channa, P.G. Coordinator

for providing us adequate environment, facility for carrying thesis work.

I would like to thank to all staff members who were always there at the need of hour and

provided with all the help and facilities, which I required for the completion of my thesis.

I would also like to express my appreciation to my co-worker and my friends Jitender,

Nupur, Mandeep, Aman, Mahima, Balaji for motivation and providing interesting work

environment. It was great pleasure in working with them during this thesis work.

At last but not the least I would like to thank God and my parents for not letting me down

at the time of crisis and showing me the silver lining in the dark clouds.

Mahima Singh

Roll No. 80731011

M.E (Software Engineering)

 iii

Abstract

The most common use of hashing is in computing that one might expect hash

functions is not well understood, and that choosing appropriate function should not be

difficult. Recommendations are made for choosing hashing a strategy and hashing

method and measuring its performance.

hashing. The report tries to find out the advantages and disadvantages of hashing. It

discusses about hashing and its various components which are involved in hashing

and states the need of using hashing i.e. for faster data retrieval. The report contains

the study of hash table and the problem like collision which occur in managing the

hash table and its solution to overcome the problem like separate chaining and open

addressing, the various methods involve in open addressing like linear probing

,quadratic probing and double

It discusses the hash table, its basic operations and typical hash function operations

and the problems for which hash tables are suitable and for which hash tables are not

suitable. It contains the some common hashing methods like the division method,

multiplication methods, folding method and other hashing method Midsquare,

Addition, Digit Analysis which are used in different application of hashing.

And finally compare all the methods and techniques, so we can conclude that which

methods are best suitable for which kind of problems. It helps to finding the best

hashing technique and hash function is best for that problem. A hash function can be

defined as a function that compresses a large message into a fixed small size ‘message

digest’. There are many hash function but the most widely use of them is in

cryptographic applications. These cryptographic hash functions are based on the block

ciphers

This thesis presents a survey on different types of the hash functions, different types

of hashing methods ,hashing strategies and structural weaknesses of them or the

 iv

limitation of them that in which kind of problem they are suitable and for what they

can’t be used.

Here comparison of various hash table techniques provides a great help for finding

out the best suitable hashing for any problem. For it some popular techniques: open

addressing, coalescent chaining and separate chaining are discussed. And all these

comparison provides the base for our problem that is choosing the best hashing

strategies and hash function.

 vi

Table of Contents

Certificate………………………………………………………………………… i

Acknowledgment………………………………………………………………… ii

Abstract…………………………………………………………………………... iii

Thesis Organisation……………………………………………………………… v

Table of Contents………………………………………………………………… vi

List of Tables…………………………………………………………………….. ix

List of Figures………………………………………………………………….... x

Chapter 1: Introduction

1.1 What is Hashing…………………………………………………………... 1

1.2 Features of Hashing…………………………………………….................. 3

1.3 The Hash Table……………………………………………………………. 3

1.3.1 Basic Operation…………………………………………………… 6

1.3.2 How Hash Table Works…………………………………………… 7

1.3.3 Advantages………………………………………………………… 8

1.3.4 Disadvantages……………………………………………………... 8

1.4 Hash Function……………………………………………………………... 1

0

1.4.1 Choice of Hash Function………………………………………….. 1

0

1.4.2 Choosing Hash Keys………………………………………………. 1

1

1.4.3 Perfect Hashing……………………………………………………. 1

2

Chapter 2 : Problems in Hashing: Collision

2.1 Collision…………………………………………………………………… 1

3

2.1.1 Hash Collision…………………………………………………….. 1

3

2.1.2 Load factor………………………………………………………… 1

3

2.2 Resolving Collisions………………………………………………………. 1

4

2.2.1 By Chaining…………………………………………………………. 1

4

 vii

2.2.2 Open Addressing……………………………………………………. 1

7

2.2.3 Advantages over Open Addressed Hash Tables…………………….. 2

1

2.2.4 Some Other Collision Resolution Techniques………………………. 2

2

Chapter 3: Hashing Types

3.1 Static Hashing……………………………………………………………... 2

4

3.2 Dynamic Hashing…………………………………………………………. 2

5

3.3 Characteristics of Good Hash Functions………………………………….. 2

5

3.3.1 Basic Hashing Issues……………………………………………… 2

5

3.4 Hashing Methods………………………………………………………….. 2

6

3.4.1 The Division Method ……………………………………………...... 2

6

3.4.2 The Multiplication Method………………………………………...... 2

7

3.4.3 The Folding Method………………………………………………… 2

8

3.4.4 Random-Number Generator………………………………………… 2

8

3.5 Other Hashing Methods…………………………………………………… 2

8

4.5.1 Midsquare…………………………………………………………… 2

9

4.5.2 Addition……………………………………………………………... 2

9

 4.5.3 Digit Analysis……………………………………………………….. 3

0

3.6 Hashing Strategies ………………………………………………………... 3

0

3.6.1 Universal Hashing…………………………………………………… 3

0

3.6.2 Hashing with Polynomial…………………………………………… 3

1

3.6.3 Cascade Hashing…………………………………………………….. 3

2

3.6.4 Cuckoo Hashing…………………………………………………...... 3

2

3.6.5 Geometric Hashing………………………………………………….. 3

4

3.6.6 Cryptographic Hashing……………………………………………… 3

5

3.6.7 Robust Hashing ……………………………………………………... 3

6

 viii

3.6.8 Bloom filters………………………………………………………… 3

7

3.6.9 String Hashing……………………………………………………… 3

8

Chapter 4 : Choosing Best Hashing Strategies and Hash Function

 4.1 Comparisons between Linear probing and Double hashing………………. 4

0

4.2 Comparisons: Open Addressing verses Separate Chaining……………….. 4

0

4.3 Comparisons between Open Addressing Methods………………………... 4

0

4.4 Comparisons between the hashing methods………………………………. 4

1

4.4.1 Chained Hashing………………………………………………….... 4

1

4.4.2 Double Hashing……………………………………………………... 4

1

4.4.3 Linear Probing………………………………………………………. 4

1

4.4.4 Coalesced Chaining……………………………………………......... 4

1

4.4.5 Cuckoo Hashing……………………………………………………... 4

2

4.4.6 Two-Way Chaining…………………………………………………. 4

2

4.5 What Constitutes a Good Hash Function………………………………..... 4

3

4.6 Universal Hashing………………………………………………………… 4

4

4.7 Hashing with Polynomials………………………………………………… 4

4

4.8 Cascade Hashing…………………………………………………………... 4

5

4.9 Cuckoo Hashing…………………………………………………………… 4

5

4.10 Geometric Hashing………………………………………………………. 4

6

4.11 Cryptographic Hashing…………………………………………………... 4

6

4.12 Robust Hashing………………………………………………………….. 4

6

4.12.1 Robust Audio Hashing……………………………………………... 4

7

4.12.2 Robust Image Hashing……………………………………………... 4

7

4.13 Bloom Filters…………………………………………………………….. 4

7

 ix

4.14 String Hashing…………………………………………………................ 4

8

4.15 Best suited Hashing technique for a particular problem…………………. 4

8

Chapter 5: Results and Conclusion

 5.1 Results……………………………………………………………………... 5

1

 5.2 Conclusion………………………………………………………………… 5

4

Annexure

I. References………………………………………………………………………. 5

6

II. Appendices……………………………………………………………………... 5

9

III. List of Publications…………………………………………………………..... 6

3

 x

List of Tables

Table 4.1: Comparisons Table of Open Addressing methods……………….........

40

Table 4.2: Best suited Hashing Technique for a particular problem……………...

48

 xi

List of Figures

Figure 1.1 Hash Function and Hash Keys……………………………………… 5

Figure 2.1 Load Factor…………………………………………………………. 14

Figure 2.2 Separate Chaining………………………………………………….. 15

Figure 2.3(a) Coalesced Chaining……………………………………………… 16

Figure 2.3(b) Coalesced Chaining……………………………………………... 16

Figure 2.4 Linear Probing……………………………………………………… 19

Figure 2.5 Quadratic Probing…………………………………………………... 19

Figure 2.6(a) Double Hashing………………………………………………….. 20

Figure 2.6(b) Double Hashing…………………………………………………. 21

Figure 3.1 Cocukoo Hashing…………………………………………………… 33

1

CHAPTER 1

Introduction

One of the fundamental problem in computer science is how to store information so

that it can be searched and retrieved efficiently .We already have binary search trees

that support operation such as INSERT, DELETE and RETRIEVAL in O (n log (n))

expected time in operations. So in many applications where we need these operations

in that case hashing provides a way to reduce expected time to O (1).

The idea behind the hashing comes naturally if we approach the problem in the

straightforward fashion and then work around the memory problem. Hashing is the

most efficient scheme for locating and retrieving information‟s.

1.1 What is Hashing?

Hashing is a procedure that is used in sorting and retrieving the information about the

database. This information is associated with key properties and makes use of

individual character, numbers in the key itself. Hashing is a good technique for

implementation in keyed tables [1].

In hashing the transformation of a string of characters into a frequently shorter fixed-

length value or key that represents the original string is done. It‟s really tough to do

the work in a faster manner like to discover the item using the shorter hashed key than

to find it using the original value so for this reason hashing is very capable, so it is

used to locate and retrieve items in a database. Moreover, it is also used in many

encryption algorithms [2].

It is a technique used for storing and retrieving information (in main memory) as fast

as possible and also used in performing optimal searches and retrievals because it

increases speed, betters ease of transfer, get better retrieval, optimizes searching of

data, reduces overhead. The main benefit of hashing is to optimize disk accesses and

packing density. The packing density, approximately equal to a load factor. The main

motive of hashing is to reduce disk space and access time by inserting and retrieving a

2

record from the table in only one seeks. So for minimizing of this thing small hash

table size must be used (that should be less than 10) [2] [3].

Hashing is a scheme of sorting and indexing data when we think about the case of

databases. The hashing is mainly used to index the huge quantity of data using

keywords or keys commonly created by complex formulas. Using hashing large

amounts of information can be rapidly searched and listed.

When referring to security, hashing is a process of taking data, encrypting it, and

creating unpredictable, irreversible output. There are many different types of hashing

algorithms. MD2, MD5, SHA and SHA-1 are examples of hashing algorithms [4].

There are 4 key components involved in hashing:

1. Hash Table

2. Hashing and Hash Functions

3. Collisions

4. Collision Resolution Techniques.

The hash table is a storage location in memory or on disk that records the hashed

values shaped by the hashing algorithm. Some storing known type of data is wanted.

For creating a hash table certain number of buckets or storage locations.

Hashing is somewhat different from other type data structure such as binary trees,

stacks, or lists because the data in a hash table does not have to be reorganized before

being retrieved or inserted and in the other data structures, the items are stored either

in the form of lists or trees. For larger data sets it can be a big problem, where a search

and retrieval must travel through all nodes of a tree or all elements of a list. With a

hash table, the size is set, so inserting or searching for an item is limited. On the other

hand the time for storage and or retrieval with lists, trees or even stacks is related to

the size of the data set [5].

All the element of data can be hashed in hash table and its size plays an important role

in the efficiency of hash table. These tables contain a set number of buckets (storage

spaces) and are stored in memory or on disk.

3

Items either strings or integers which are inserted into the hash table will differ and

tackled in a diverse way. For example, if it is an integer it can be directly used by a

hashing method to find a key. Alternatively, string item, is first converted to an integer

value with the help of the ASCII conventions or some other consistently used

technique (this is called 'preconditioning').

Preconditioning: Transforming a string to an integer with the help of ASCII

conventions. String item has to be transformed to an integer prior to a key can be

found. This process is known as preconditioning. Normally, ASCII conventions for

transforming characters are used. ASCII values are assigned to the 26 letters starting

at 11 (numbers 0 to 10 are first). Thus, 'A' is 11, 'B' is 12, and „C‟ is 13, and so on

until 'Z' is 36. The numbers 37 and up are assigned to 'special characters' such as +, -,

=, /, * and so on. For example, "Joe" is converted to

202515 using J=20, O=25 AND E=15.

A problem occurs in after preconditioning is that the consequential integer is too large

to be stored in a table. To resolve this trouble we can use one hash process to attain a

usable number and a second method to map the result to the table.

1.2 Features of Hashing

As hashing is the approach for storing and searching the data so the major working is

done with the data .So main description of hashing are:

 Randomising: The spreading the data or records randomly over whole

storage space.

 Collision: When two different key hashes to the same address space. This

is the one major problem in hashing which will be discuses later chapter.

1.3 The Hash Table

The simplest way the hash table may be explained as a data structure that divides

every element into equal-sized categories, or buckets, to permit quick access to the

elements. The hash function finds that which element belongs to which bucket. A hash

4

table can also be definite as data structure those acquaintances keys with values. The

basic procedure is to support powerfully and finds the consequent value.

Basically it is the one-dimensional array indexed by an integer value computed by an

index function called a hash function. Hash tables are sometimes referred to as scatter

tables. Hash table are containers that represent a group of objects inserted at computed

index locations. Each object inserted in the hash table is related with a hash index. The

process of hashing involves the computation of an integer index (the hash index) for a

given object (such as a string). If calculated correctly, the hash calculation (1) should

be quick, and (2) when finished frequently for a set of keys to be inserted in a hash

table should create hash indices consistently spread crossways the variety of index

values designed for the hash table [6].

In algorithms a hash table or hash map is a data structure that uses a hash function to

efficiently map certain identifiers or keys (student name) to associated values (e.g. that

students enrolment no.).The hash function is used to transform the key into the index

(the hash) of an array element (the slot or bucket) where the corresponding value is to

be sought. Hash function are used to map each key to different address space but

practically its not possible to create such a hash function that is able to do this and the

problem called collision occurs. But still it is done up to greatest feasible case so that

the chances of collision should be kept minimum. In a well-dimensioned hash table,

the regular cost (number of instructions) for each lookup is self-determining of the

number of elements stored in the table [8] [17].

But still having all the problems hash table are much more proficient in many cases

comparative to all other data structures like search trees or any other table lookup

structure. That the reason behind using hash tables in all kinds of computer software,

particularly for associative arrays, database indexing, caches, and sets[8].

5

Figure 1.1.Hash functions and hash keys

When two different objects create the same hash index, it is referred as a collision.

Clearly the two objects cannot be located at the equivalent index position in the table.

A collision resolution algorithm must be calculated to place the second object at a

position separate from the first when their hash indices are alike.

The two primary problems associated with the creation of hash tables are:

1. The efficient hash function is designed so that it distributes the index values of

inserted objects uniformly across the table.

2. The efficient collision resolution algorithm is designed so that it computes an

alternative index for an object whose hash index corresponds to an object

previously inserted in the hash table [8].

A hash table is an array based structure used to store “key, information” pairs. To

accumulate an entry in a hash table, a hash function is functional to the key of the item

being stored; frequent an index within the range of the hash table. The item is then

stored in the table at that index position. Each index location in a hash table is called a

bucket. To retrieve an item in a hash table, the same method is followed as used to

store up the item.

Input

Data

Hash

Function

Address Location 1

Address Location 2

Address Location 3

Address Location 4

Address Location n

Output

Hash Key

6

Typical hash table operations are:

 ► Initialization.

 ► Insertion.

 ► Retrieval.

 ► Deletion.

1.3.1 Basic operation

Transforming the key into a hash, to situate the desired position by using a function,

does working of hash table. A number that is used as an index in an array ("bucket")

where the values should be. The number is transformed into the index by taking a

modulo. The optimal hash function can vary widely for any given use of a hash table,

however, depending on the nature of the key. Typical operations that can be done in

hash table are insertion, deletion and lookup (although some hash tables are pre

calculated so that no insertions or deletions, only lookups are done on a live system

[7].

Problems for Which Hash Tables are not suitable are:

1. Problems for which data ordering is required.

Certain operations are difficult and expensive to e implement because a hash

table is an unordered data structure. Only if the keys are copied into a sorted

data structure queries, proximity queries, sorted traversals and selection are

possible. There are hash table implementations that keep the keys in order, but

they are far from efficient.

2. Problems having multidimensional data.

3. Prefix searching especially if the keys are long and of variable-lengths.

4. Problems that have dynamic data:

 Since open addressed hash tables are 1 Dim array its very difficult to be resized

them, once they are allocated. Ahead of that implementing the table as a

dynamic array and rehash all of the keys on every occasion the size changes

can do it. This is an extremely luxurious operation. Separate-chained hash

tables or dynamic hashing can be used as an alternate.

5. Problems in which the data does not have unique keys.

 If the data does not have unique keys open-addressed hash tables cannot be

used. An alternative is use separate-chained hash tables.

7

1.3.2 How Hash Tables works?

A hash table works with transforming the key by means of a hash function into a hash,

a number that is used as an index in an array to position the desired location where the

values should be. Hash tables are generally used to implement many types of in-

memory tables.

Mainly the hash tables are efficient for insertion of new entries, in expected time.

Means it reduces the time for insertion. The main factor for the time spent in searching

or the other operations involved in this are firstly the hash function and secondly the

load on has table for both insertion and search approach time.

The most frequent operations on a hash table include insertion, deletion and lookup

but some hash tables are pre calculated so the operations like insertions or deletions

are not possible only lookups can be done on a live system. These operations are all

performed in amortized constant time, which makes maintaining and accessing a huge

hash table very efficient.

It is also likely to generate a hash table statically where for example there is a

moderately restricted rigid set of input values such as the value in a single byte or

perhaps two bytes from which an index can be constructed in a straight line. The hash

table can also be used concurrently for tests of authority on the values that are

disqualified.

Since two records cannot be stored in the same location so two keys hash cannot be

indexed to the same location, an alternate location must be determined because two

records cannot be stored in the same location .The process of finding an alternate

location is called collision resolution. A collision resolution strategy ensures future

key lookup operations that from no the query returns to the correct respective records

and the problem of finding the same record on one location is solved.

A significant fraction of any hash table is selecting a resourceful collision resolution

strategy. Consider the case imitative by means of the birthday paradox of a hash table

containing million indices. Although a hash function be to output arbitrary indices

homogeneously scattered over the array there is a 95% chance of a collision

happening before it contain 2500 records. There are a number of collision resolution

8

techniques but the mainly admired are open addressing and chaining which will be

discussed in chapter 2 [9].

1.3.3 Advantages

 The main benefit of hash tables in excess of former table data structures is speed.

This benefit is additional capable when the data is large (thousands or more). Hash

tables becomes practically efficient when the greatest number of entries or the size

of data is recognized or can be predicted in move forwards, so that the bucket

array can be owed once with the most favourable size and there will be no require

to be resized.

 One benefit of hashing is with the purpose of no index storage space is necessary,

while inserting into other structures for instance trees does in general require an

index. Such an index could be in the variety of a queue. In addition, hashing

provides the advantage of rapid updates.

 The average lookup cost may reduce by a careful alternative of the hash function,

bucket table size, and internal data structures if the set of key-value pairs is

permanent and recognized earlier than instance (so insertions and deletions are not

allowed). In particular, one may be able to plan a hash function that is collision-

free, or even ideal. For this the keys need not be stored in the table [10] [11].

1.3.4 Disadvantage

 Hash tables are trickier to execute as compared to the efficient search trees.

Choosing an effective hash function for a specific application is the mainly

significant in creating hash table. In open-addressed hash tables it is fairly easy to

create a poor hash function.

 Other problem in using hashing as an insert and retrieval tool is that it more often

than not lacks locality and chronological retrieval by key. As result the insertion

and retrieval becomes more indiscriminate.

 Another disadvantage is the inability to use duplicate keys. This is a problem

when key values are very small (i.e. one or two digits).

 Even though operations on a hash table obtain constant time on regular, the charge

of a good hash function be able to be considerably superior than the inner loop of

9

the lookup algorithm for a in order list or search tree. Thus hash tables are not

efficient when the number of entries is very tiny.

 Hash tables may be less efficient than tries for certain string processing

applications, such as spell checking, Also, if every key is represented by a little

sufficient number of bits, then, as an alternative of a hash table, one might use the

key straight as the index into an array of values. Note that there are no collisions in

this case.

 The entries stored in a hash table in a number of pseudo-random order can be

enumerated powerfully. Therefore, there is no efficient way to efficiently situate

an entry whose key is adjacent to a given key. Generally for separate sorting is

required for catalogue all n entries in some specific order, whose cost is relative to

log (n) for each entry. In contrast, ordered search trees encompass lookup and

insertion cost proportional to log (n), but permit finding the adjacent key regarding

the identical cost, and ordered enumeration of all entries at steady cost per entry.

There may be no trouble-free approach to enumerate the keys, if the keys are not

stored (because the hash function is collision-free), that are present in the table at

any known instant [12].

 Although the standard cost per operation is stable and moderately small but still

the cost of a single operation could be rather high. Specifically an insertion or

deletion operation might infrequently get time comparative to the number of

entries, if the hash table uses dynamic resizing. This becomes a chief negative

aspect in real-time or interactive applications [10].

 For the reason that hash tables cause access patterns that jump around, this be able

to trigger microprocessor cache misses that cause elongated delays. Consequently

in general hash tables demonstrate poor locality of orientation to be precise, the

data to be accessed is scattered apparently at arbitrary in memory. Compact data

structures for example arrays, searched with linear search, may possibly be faster

if the table is moderately small and keys are integers or other small strings.

 Hash tables develop into quite inefficient when there are many collisions. While

extremely uneven hash distributions are extremely unlikely to arise by chance, can

cause excessive collisions, which may result in very poor performance (i.e., a

denial of service attack) [13].

10

1.4 Hash Functions

Hash function is mathematical function or a process, which transform a huge, possibly

variable-sized amount of data into a small, usually fixed-sized. The values get back by

a hash function are called hash values or simply hashes, and usually take the form of a

single integer represented in hexadecimal. Hash functions are most commonly used to

speed up table lookup or data comparison tasks such as finding items in a database,

detecting duplicated or similar records in a large file [7].

1.4.1 Choice of Hash Function

Choice of hash function is obviously is the matter of choice the need of problem

means there are many parameters for choosing the hash function. But its not possible

to choose exactly the perfect one because many problems are faced in selecting the

hash function during the choice of hash function. So there may be three possible ways

for it.

 Perfect Hash Function: There is no feasibility for this type of hash function if the

data is large because practically it is not possible for huge data.

 Desirable Hash Function: For these hash function the address space should be

small and collision should be kept very less or minimum.

 Trade-Off: But for above a tradeoffs should be maintained because for the larger

data sets its very easy to avoid collision but the storage utilization becomes worst.

So it‟s very important to maintain tradeoffs between them.

1.4.2 Choosing Hash Keys

One significant thought in selecting a hash key is the query design. In the predicates of

queries there should be an EQUAL factor for each key column that will use the hash

structure.

The subsequently significant concern is the allocation of key values. The most

excellent key marks in a set of hash values that are consistently dispersed between the

primary pages existing. The worst key marks in hash values that gather strongly in a

fine range of primary pages, leaving others empty [7].

11

The next significant concern is that a key have to be unique. It possibly will be a

unique single column value or a unique combination. Intended for constructing a key

to be unique a hash key have to be non-volatile. when a key is need to be modified

necessary only DELETE can be followed by an INSERT ,because the UPDATE

statement can‟t be used by means of a hash key column. a range of columns can as

well be used to generate a unique key, as in the subsequent example:

CREATE PUBLIC TABLE PurchDB.OrderItems

 OrderNumber INTEGER NOT NULL,

 ItemNumber INTEGER NOT NULL,

 VendPartNumber CHAR(16),

 PurchasePrice DECIMAL(10,2) NOT NULL,

 OrderQty SMALLINT,

 ItemDueDate CHAR(8),

 ReceivedQty SMALLINT

 UNIQUE HASH ON (OrderNumber, VendPartNumber) PAGES=101 IN OrderFS

For any hash table, the selected hash function has to be choosing for quick lookup,

and it have to cause as minimum number of collision as it can. And if the keys are

chosen in such a fashion that it is possible to get zero collisions this is called perfect

hashing. Otherwise, the best you can do is to map an equal number of keys to each

possible hash value and make sure that similar keys are not unusually likely to map to

the same value.

1.4.3 Perfect Hashing

The hashing which ensures to get no more collisions at all is called as Perfect

Hashing. A hash function that is injective that is, maps each valid input to a different

hash values is said to be perfect. With such a function one can directly locate the

desired entry in a hash table, without any additional searching.

The problem with perfect hash functions is that it is useful only in conditions

anywhere the inputs are fixed and completely recognized in advance, such as mapping

12

month names to the integers 0 to 11, or words to the entries of a dictionary. For the

use in a hash table a suitable perfect function for a known set of n keys, can be

establish in time relative to n, can be represented in less than 3n bits, and could be

evaluated in a stable number of operations. Optimized executable code are emitted by

the generators to estimate a perfect hash designed for a given input set [7].

13

CHAPTER 2

Problems in Hashing: Collision

2.1 Collision

Collision is the condition where two records are stored in the same location. But two

records cannot be stored in same memory addresses; the process of finding an

alternate location is called collision resolution. The impact of collisions depends on

the application. For avoiding the collision hash functions should be choose cleverly.

 Checksums are the one that are designed to minimize the probability of collisions

between similar inputs, without regard for collisions between very different inputs

[14].

2.1.1 Hash collision

It is a condition in which a hash function gives the same hash code or hash table

location for two different keys. Consider a case where two passwords encrypt to same

value - thus there are two passwords that can be used to enter the system. Suppose

there are numbers of forms that needs to be placed in sorted order by first letter of

their surname. But if there are many people that have their names starts with same

letter, then there will be more than one paper that needs to be stored in piles. In this

case, the hashing system needs to cope with the hash collision described above. The

first solution can be sorting them using second letter of the surname. Again there's a

1/26 possibility that there's more than one with same second letter.

2.1.2 Load factor

The presentation of Collision resolution methods does not depend openly on the

number n of stored entries, but also dependent relative on the table's load factor. The

load factor is the ratio n/s between n and the size s of its bucket array. The standard

cost of lookup through a good quality hash function, is practically constant as the load

factor increases from 0 up to 0.7 or so. Further than these points, the likelihood of

collisions and their cost as well for handling them, both increase [7].

14

As the load factor approaches zero, the size of the hash table increases with little

improvement in the search cost, and memory is wasted.

Figure 2.1 This graph compares the average number of cache misses required to

lookup elements in tables with chaining and linear probing. As the table passes the

80%-full mark, linear probing performance drastically degrades [6].

2.2 Resolving Collisions

In collision resolution strategy algorithms and data structures are used to handle two

hash keys that hash to the same hash keys. There are a number of collision resolution

techniques, but the most popular are open addressing and chaining.

 Chaining: An array of link list application

o Separate chaining

o Coalesced chaining

 Open Addressing: Array based implementation

o Linear probing (linear search)

o Quadratic probing (non linear search)

o Double hashing (use two hash functions)

2.2.1 By Chaining

Occasionally the chaining is also known as direct chaining; in its simplest form this

procedure has a linked list of inserted records at every slot in the array references.

15

 Separate Chaining

Every linked list has each element that collides to the similar slot. Insertion need to

locate the accurate slot, and appending to any end of the list in that slot wherever,

deletion needs searching the list and removal.

Figure 2.2: Separate Chaining

 Coalesced Chaining

Coalesced hashing is a scheme of collision resolution and it is a mix form of separate

chaining and open addressing in a hash table. In a separately chaining a great quantity

of recollection get wasted as in its hash table, items that hash to the same index are

located on a list at that index, because the table itself have to be great enough to

preserve a load factor that performs well (typically twice the expected number of

items), and additional memory have to be used for all but the first item in a chain

(unless list headers are used, in which case extra memory must be used for all items in

a chain).

For example for a given sequence of randomly generated three character long strings,

the following table would be generated with a table of size 10:

16

Figure 2.3 (a): Coalesced chaining

Figure 2.3 (b): Coalesced chaining

This scheme is successful, proficient, and very simple to put into practice. though,

sometimes the additional memory employ might be a problem but an additional

frequently used option is there, that is open addressing. It has a drawback that

degrades the performance. Actually more specifically, open addressing has the

difficulty of primary and secondary clustering, where there are long sequences of used

Fim

Gib

Ele

Joe

Cop

Dine

Ana

Bee

Hop

Int

17

buckets, and extra time is needed to calculate the next open bucket for a collision

resolution.

Coalesced hashing is the one resolution to the clustering. A similar technique is used

here as used in separate chaining, but as an alternative of locating a new nodes for the

linked list, buckets are used in the table. The initial unfilled bucket in the table is

called a collision bucket. When somewhere in the table collision occurs, the item is

located in the collision bucket and a link is made connecting the colliding index and

the collision bucket. After that to provide the next collision bucket, the next unfilled

bucket is searched. As of this the consequence of primary and secondary clustering is

minimized, and search times stay on well-organized. As the collision bucket moves in

a expected prototype distinct to how the keys are hashed.

Coalesced chaining provides a good effort to avoiding the effects of primary and

secondary clustering, and as a result can take advantage of the efficient search

algorithm for separate chaining. For short chain, this strategy is very efficient and can

be highly condensed, memory-wise [14].

2.2.2 Open Addressing

Open addressing hash tables be used to stock up the records straight inside the array.

This approach is also known as closed hashing. This procedure is based on probing. A

hash collision is resolute by probing, or searching through interchange locations in the

array (the probe sequence) awaiting either the target record is establish, or an vacant

array slot is establish, that‟s the sign of that there is no such key in the table [7].

Well known probe sequences include:

► Linear probing in which the interval between probes is fixed often at 1.

► Quadratic Probing in which the interval between probes increases proportional to

the hash value (the interval thus increasing linearly and the indices are described

by a quadratic function).

► Double Hashing in which the interval between probes is computed by another

hash function.

18

The major tradeoffs between these methods are that linear probing has the best cache

performance but is mainly responsive to clustering, even as double hashing has poor

cache performance but exhibits nearly no clustering; quadratic probing cascade in-

between in both areas. More computation is require in double hashing than other

forms of probing.

A major influence open addressing hash table‟s performance is the load factor; that is,

the proportion of the slots in the array that are used. As the load factor increases

towards 100%, the number of probes that may be required to find or insert a given key

raises abruptly. Probing algorithms may even fail to terminate, if once the table

becomes full. Even with good hash functions, load factors are normally limited to

80%. A poor hash function can exhibit poor performance even at very low load factors

by generating significant clustering. So both the load factor and hash function play

important role here [7] [15].

 Linear Probing

Linear probing method is used for resolving hash collisions of values of hash

functions by sequentially searching the hash table for a free location. This method‟s

performance is more sensitive to the input distribution as compare to other methods

like double hashing which will be discussed later.

 The item will be stored in the next available slot in the table in linear probing also an

assumption is made that the table is not already full. This is implemented via a linear

search for an empty slot, from the point of collision. If the physical end of table is

reached during the linear search, the search will again get start around to the

beginning of the table and continue from there. The table is considered as full, if an

empty slot is not found before reaching the point of collision,

19

Figure 2.4: Linear Probing

Limitation:

A problem with the linear probe method is primary clustering. In primary clustering

blocks of data may possibly be able to form collision. Several attempts may be

required by any key that hashes into the cluster to resolve the collision.

 Quadratic Probing

To resolve the primary clustering problem, quadratic probing can be used.

Figure 2.5: Quadratic Probing

20

Limitation:

Maximum half of the table can be used as substitute locations to resolve collisions.

Once the table gets more than half full, it‟s really hard to locate an unfilled spot. This

new difficulty is recognized as secondary clustering because elements that hash to the

same hash key will always probe the identical substitute cells.

 Double Hashing

Double hashing uses the idea of applying a second hash function to the key when a

collision occurs. The result of the second hash function will be the numbers of

positions from the point of collision to insert. There are some requirements for the

second function:

 1. It must never evaluate to zero

 2. Must make sure that all cells can be probed

 A popular second hash function is: Hash2 (key) = R – (key mod R) where R is a

Prime number smaller than the size of the table.

Figure 2.6 (a): Double Hashing

21

Figure 2.6 (b): Double Hashing

An efficient collision resolution strategy is an important part of any hash table. Regard

as the subsequent case, derived using the birthday paradox, of a hash table containing

1 million indices. Although a hash function were to output random indices uniformly

distributed over the array, there is a 95% chance of a collision occurring before it

contains 2500 records [15].

2.2.3 Advantages over Open Addressed hash tables

The elimination function is straightforward and resizing the table can be delayed for a

greatly longer time because performance degrade more gracefully even when every

slot is used this is a chief benefit of chained hash tables above open addressed hash

tables in that. In addition numerous chaining hash tables might not need resizing at all

because performance degradation is linear as the table fills.

But besides that chained hash tables inherit the disadvantages of linked lists. When

storing small records, the overhead of the linked list can be important. Traversing a

linked list has poor cache performance is one more extra disadvantage of it.

22

When a collision occurs, elements with the same hash key will be chained together.

 A chain is simply a linked list of all the elements with the same hash key.

 The hash table slots will no longer hold a table element. They will now hold the

address of a table element [7].

2.2.4 Some Other Collision Resolution Techniques

 Cuckoo Hashing.

In cuckoo hashing two memory accesses are used in lookups. After the first memory

lookup becomes unsuccessful hashing is done by the second hash function.

Comparatively it is much faster than chained hashing for small, cache-resident hash

tables. Also the bucketized versions of cuckoo hashing (variants that use buckets that

contain more than one key) is much more faster than conventional methods and it is

used for large hash tables, when space utilization is high .When storing a large set of

distinct keys, comparative to the other traditional hashing schemes tables, including

linear probing ,the performance of the cuckoo hash table , for maintaining a large

dictionary of integers in memory is recorded to be faster to build, search, and delete

than the equivalent chained and array hash tables. Although the cuckoo hash table is

space-intensive relative to the array hash table. But it was not as scalable, since the

number of slots available, their capacity, and the extra vacant slots needed to prevent

an irresolvable collision bound the total number of distinct keys storable. Hence, in

order to cater for an unexpected increase in the number of distinct keys processed, for

example, the cuckoo hash table will need to be re-sized which can be both expensive

and space-intensive, particularly in a dynamic environment.

The bucketized cuckoo hash table was confirmed to be the slowest hash table, far

inferior to both the chained and array hash tables if we consider the performance of

hash tables under important skew access. Indeed, the greatest hash table for both

distinct and skew data distribution was linear probing, though it too is not a scalable

option relation to the array hash table; and even though more space-efficient than

cuckoo hashing, it also requires a remaining of unfilled slots.

23

 Two-Way Chaining

The next method, Two-Way Chaining, can be described as two instances of chained

hashing. A key is inserted in one of the two hash tables, namely the one where it

hashes to the shorter chain. Two-way chaining is a novel hashing scheme that uses

two independent truly uniform hash functions f and g to insert m keys into a hash table

with n chains, where each key x is inserted into the shortest chain among the chains

f(x) and g(x), breaking ties randomly. The two-way chaining paradigm is utilized to

design efficient open addressing hashing schemes. If a longer list is needed, a rehash

must be performed [32].

24

CHAPTER 3

Hashing Techniques

Hashing is a method to storing the data in an array so that storing, searching, inserting

and deleting data is fast and efficient. The basic idea is not to search for the correct

position of a record with comparisons but to compute the position within the array. All

this is done on the basis of the given data, whether it is fixed or it can vary such as it

will increase further or not, so that hashing can be implemented. There are two types

of hashing: Static Hashing & Dynamic Hashing .If the data is fixed static hashing is

beneficial but if its not fixed static hashing can give one problem so dynamic hashing

is the next alternative for such type of data.

3.1 Static hashing

The set of keys is kept fixed and given in advance in static hashing. In static hashing

the number of primary pages in the directory are kept fixed. Thus, when a bucket is

full, an overflow bucket is needed to store any additional records that hash to the full

bucket. This can be done with a link to an overflow page, or linked lists of overflow

pages. The linked list can be separate for each bucket, or the same for all buckets that

overflow. The original bucket is accessed first when search is done, and then the

overflow buckets are accessed. There are also many keys that hash to the same bucket,

locating a record may require accessing multiple pages on disk, which can affect the

performance and can degrades it.

It have a constraint to the designer had to fix the size of the address space at file at the

time of formation .All the parameters are kept constant such as capacity and no of

bucket. However there a problem that is if the address space was selected extremely

big, space would be exhausted and if the designer guessed too small, the number of

overflows and the access time would rise that is one more additional disadvantage.

The single solution was a luxurious reorganization of the complete file. The

reorganization process first allocated a larger address space, then rehashed all the

records (using a different hash function) to the larger address space, and finally

released the old address space. Typically, this reorganization was a time-consuming

process. Basically in static hashing there is a direct trade-off between space utilization

25

and access time in a dynamic environment. The smaller the space allocation, the more

likely are overflows and poorer performance. The dynamic hashing schemes are used

to reduce this space versus access-time trade-off and avoid the expensive remaking

[16].

3.2 Dynamic hashing

The set of keys can change dynamically in this. Dynamic hashing is able to solve the

problem of long searching of overflow buckets. In this type of hashing the size of the

directory grows with the number of collisions to contain new records and avoid long

overflow page chains. Extendible and Linear Hashing are two dynamic hashing

techniques. Dynamic hashing has developed to the point at which useful

implementations can be made. Dynamic hashing can expand and contract gracefully

while maintaining reasonable access times and space utilization [18] [16] [33].

3.3. Characteristics of Good Hash Functions

 A good hash function should following characteristics

 Minimize collision

 Be easy and quick to compute

 Distribute key values evenly in the hash table

 Use all the information provided in the key

 Have a high load factor for a given set of keys.

3.3.1 Basic Hashing Issues

How can a good hash function be found?

 The logic of the function must be clear and should be dependent upon the type

of the key

 Besides it, the hash function should also depend upon the set of key values that

will actually be hashed.

 The function should be made that it is easily computable and efficient too.

26

3.4 Hashing Methods

There are around seven common methods used in hashing, or the seven ways to insert

values into a key accessed table. These are listed in no particular order that is given

below.

 Division Method

 Multiplication Method

 Folding Method

 Length-dependent Method

 Midsquare Method

 Digit-Analysis

 Addition Method

This report discusses each of these with emphasis on the division, multiplication and

folding methods. Also one method is there called as random method generator. The

random number produced can be transformed to produce a valid hash value [7].

3.4.1 The Division Method

A hash function must guarantee that the number it returns is a valid index to one of the

table cells. The simplest way to accomplish this is division method. In this an integer

key is divided by the table size and the remainder is taken as the hash value.

It has been found that the best result with the division method is achieved when the

table size is prime.

Algorithm: H (x) = x mod m + 1

Where: m is some predetermined divisor integer (i.e., the table size), x is the

preconditioned key and mod stands for modulo.

Note that adding 1 is only necessary if the table starts at key 1 (if it starts at 0, the

algorithm simplifies to (H (x) = x mod m).

In the applet, we did not add 1.

27

So, in other words: given an item, divide the preconditioned key of that item by the

table size (+1). The remainder is the hash key.

Example:

Given a hash table with 10 buckets, what is the hash key for 'Cat'?

Since 'Cat' = 131130 when converted to ASCII, then x = 131130.We are given the

table size (i.e., m = 10, starting at 0 and ending at 9).

 H(x) = x mod m

H (131130) = 131130 mod 10

 = 0 (there is no remainder)

'Cat' is inserted into the table at address 0.

The Division method is distribution-independent.

3.4.2 The Multiplication Method

A different hash method is multiplicative method. This method is used in the applet. It

multiplies of all the every single digits in the key jointly, and takes the remainder after

dividing the resulting number by the table size.

In practical notation, the algorithm is:

H(x) = (a * b * c * d *....) mod m

Where: m is the table size, a, b, c, d, etc. are the individual digits of the item, and

mod stands for modulo.

this can clearly understood this algorithm by applying it to an example.

Example:

Given a hash table of ten buckets (0 through 9), what is the hash key for 'Cat'?

Since 'Cat' = 131130 when converted to ASCII, then x = 131130

We are given the table size (i.e., m = 10).

The constant can be any number we want, let's use five (i.e., c = 5).

H (x) = (a * b * c * d *....) mod m

H (131130) = (1 * 3 * 1 * 1 * 3 * 0) mod 10

 = 0 mod 10

 = 0

'Cat' is inserted into the table at address 0.

28

Both of these Multiplication methods are distribution-independent.

3.4.3 The Folding Method

The folding method breaks up a key into precise segments that are added to form a

hash value. And still another technique is to apply a multiplicative hash function to

each segment individually before folding.

Algorithm: H (x) = (a + b + c) mod m

Where: a, b, and c represent the preconditioned key broken down into three parts,

 „m‟ is the table size, and mod stands for modulo.

In other words: the sum of three parts of the preconditioned key is divided by the table

size.

The remainder is the hash key.

Example:

Fold the key 123456789 into a hash table of ten spaces (0 through 9).

We are given x = 123456789 and the table size (i.e., m = 10).

Since we can break x into three parts any way we want to, we will break it up evenly.

Thus a = 123, b = 456, and c = 789.

H (x) = (a + b + c) mod m

H (123456789) = (123+456+789) mod 10

 = 1368 mod 10

 = 8

123456789 are inserted into the table at address 8.

The Folding method is distribution-independent.

3.4.4 Random-Number Generator

This is a scheme used for generating a pseudo-random numbers. Primarily, in

digitized the state of a chaotic system is used to form a binary string. This binary

string is subsequently hashed to construct a second binary string. This second binary

string is now used to seed a pseudo-random number generator. The output of pseudo-

random number generator is used in constructing a password or cryptographic key

which is used in a security system.

The algorithm must ensure that:

 It always generates the same random value for a given key.

29

 It is unlikely for two keys to yield the same random value.

The random number produced can be transformed to produce a valid hash value.

Pseudo random number generators mix up a state like hash functions, but they don't

take any input. They have a state of their own, and they just keep churning it. They

produce random-looking sequences, which can be used as fake data [17].

3.5 Other Hashing Methods

A few of the many hashing methods that are also used for hashing are given below-

 Length-dependent Method

 Midsquare Method

 Digit-Analysis

 Addition Method

3.5.1Midsquare

In midsquare method, the key is multiply x by itself (i.e., x2) and select a number of

digits from the middle of the result. How many digits you select will depend on your

table size and the size of your hash key. If the square is considered as the decimal

number, the table size must be a power of 10, whereas if it is considered as the

decimal number, the table size must be a power of 2.Unforunately the midsquare.

Method does not yield uniform hash values and does not perform as well as the

multiplicative or the division method.

For Example:

To map the key 3121 into a hash table of size 1000, we square it 31212 = 9740641

and extract 406 as the hash value.

It can be more efficient with powers of 2 as hash table size. Works well if the keys do

not contain a lot of leading or zeros. On-integer keys have to be pre-processed to

obtain corresponding integer values.

30

3.5.2Addition

The sum of the digits of the preconditioned key is divided by the table size. The

remainder is the hash key.

3.5.3. Digit Analysis

Certain digits of the preconditioned key are selected in a certain predetermined and

consistent pattern.

There are many other hash functions each with its own advantages and disadvantages

depending upon on the set of keys to be hashed. One consideration in choosing

function is efficiency of calculation. It does not good to be able to find an object on

the first try if that try takes longer than several trials in an alternative method. If keys

are not integer they must be converted to the integer before applying one of foregoing

hash function.

3.6 Hashing Strategies

3.6.1 Universal Hashing

For selecting a hash function say F universal hashing is used. Basically it is a

randomized algorithm .The hash function F should have the following property: for

any two distinct inputs x and y, the probability that F(x) =F(y) (i.e., that there is a hash

collision between x and y) is the same as if F was a random function. Therefore, if F

has function values in a range of size r, the probability of any particular hash collision

should be at most 1/r. There are universal hashing methods that give a function F that

can be evaluated in a handful of computer instructions. Initially hashing started for

implementing symbol tables and it is purely heuristic method. It plays an important

role in many important constructions in abstract complexity theory and in

cryptography too. And now, these constructions are generally used in many practices.

Thus, having matured inside theory, hashing gets applied in ways the original symbol

table implementers.

Randomized algorithms present a way to simply ensuring that choosing a random

function from the class allows a proof that the probabilistic expectation for any set of

inputs is that they will be distributed randomly. The main idea behind the universal

31

hashing is selecting a random hash function from a carefully designed class of hash

function.Randamisation in some cases like quick sort ensures that no input will always

evoke worst case behaviour. The algorithm can have different on each execution even

with of same input that is possible only because of randomisation and hence can

guarantee a good average case performance for the input.

Universal hashing has numerous uses in computer science, for example in

cryptography and in implementations of hash tables. Since the function is randomly

chosen, an adversary hoping to create many hash collisions is unlikely to succeed.

Universal hashing has been generalized in many ways, most notably to the notion of

k-wise independent hash functions, where the function is required to act like a random

function on any set of k inputs [2] [17].

3.6.2 Hashing with Polynomials

Basically it is the potential mathematical principles and structures that can provide the

foundation for cryptographic hash functions, and also present a simple and efficiently

computable hash function based on a non-associative operation with polynomials over

a finite field of characteristic.

Polynomial hash functions are well recognized and frequently used in numerous

applications. They become popular because of its certain performances they show.

Even linear hash functions are expected to contain such performances. But, it‟s fairly

advantageous that preferred hash functions to be reliable, i.e. they execute well with

high probability; for several significant properties even higher degree polynomials

were not known to be reliable. For some vital properties linear hash functions are not

trustworthy. Even sometimes-quadratic hash functions might not be reliable. On the

optimistic side, it is found that cubic hash functions to be reliable. But more generally,

higher degree of the polynomial hash functions exhibits into higher reliability. There

are some new class of hash functions, which enables to reduce the universe size in an

efficient and simple manner. The reliability results and the new class of hash functions

are used for some fundamental applications: improved and simplified reliable

algorithms for perfect hash functions and real-time dictionaries, which use

significantly less random bits, and tighter upper bound for the program size of perfect

32

hash functions. Hash functions are easy-to-compute compression functions that take a

variable length input and convert it to a fixed-length output. Hash functions are used

as compact representations, or digital fingerprints, of data and to provide message

integrity [13].

 3.6.3 Cascade Hashing

Cascade Hashing is a new dynamic hashing scheme, which is based on spiral storage.

Actually multilevel double hashing schemes called cascade hashing. They use several

levels of hash tables. In each table, we use the common double hashing scheme.

Higher level hash tables work as fail-safes of lower level hash tables. This strategy is

highly effective and efficient in reduce collisions in hash insertion. So it gains a

constant worst case lookup time with a relatively high load factor (70%-85%).

In the implementation of M-level cascade hash table, M hash tables are there, and use

limited double hashing in every level of table. Also the hash table size is half of its

preceding hash table (the proportion 1=2 is chosen empirically). The total number of

probes are limited and kept up to 12. Thus in every level, the probe number is p =

12=M. Here M is a factor of 12, so M 2 f1; 2; 3; 4; 6; 12g. If an item can‟t find a free

cell in Level 1 in p probes, it will probe in Level 2, and if still with bad luck, it turns to

search lower levels. If in any case crisis happens, the hash table can be enlarged and

rehashed. The lookup procedure is similar to the insertion procedure. It also takes not

more than 12 steps. Clearly, insertion and lookup both take at most 12 probes, so the

time complexity of cascade hash table is O (1).

Specially, when M = 1, it‟s the ordinary (limited) double-hashing scheme. When

M = 12(one probe every level), it‟s the “multilevel adaptive hashing" scheme.

Obviously, if we permit a larger total probe count, we can achieve higher load factor.

But the average speed will be slower. So a user can choose an appropriate

configuration, which balances best between speed and space efficiency to him [20].

3.6.4 Cuckoo hashing

Cuckoo hashing is an efficient and practical dynamic dictionary .The main

performance parameters are of course lookup time, update time, and space or the good

memory utilization. It is best for the modern computer architectures and for

33

distributed environment and presents a significant improvement as compared to all

other schemes. Basically for new generation a dynamic dictionary it is cuckoo hashing

is the main basic concept which provides much better results.

The invariable factors concerned in cuckoo hashing are critical for numerous

applications. Specifically, lookup time is a essential parameter. It is already known

that, by using a simple universal hash function, the likely number of memory probes

for all dictionary operations can be made arbitrarily close to 1 if a suitably sparse hash

table is used. Therefore the challenge is to coalesce speed with a reasonable space

usage that is effectively done by this method. Also cuckoo hashing is very simple to

implement. The pattern of this hashing is shown in below example [34].

Figure 3.1: Cuckoo hashing

[The arrows show the alternative location of each key. A new item would be inserted

in the location of A by moving A to its alternative location, currently occupied by B,

and moving B to its alternative location which is currently vacant. Insertion of a new

item in the location of H would not succeed. Since H is a part of cycle (together with

W), the new item would get kicked out again]

A

C

B

H

P

W

34

These are the following properties of Cuckoo Hashing:

 Simple implementation.

 Lookups using two probes (optimal).

 Efficient in the average case.

 A practical, provably good hash function family is not known.

3.6.5 Geometric Hashing

Basically it is a general model based technique that cab be applied in different class of

transformations. Here efficient partial matching between abject is done. So it has wide

applications in various applications.

The basic concepts of geometric hashing are:

 Object feature Representation using the transformation invariants for the

reorganisation of objects subject to any allowed transformation.

 For the efficient retrieval, these invariants are stored in hashing table, which is

almost independent of the complexity of the model database.

 Robust matching is used which guarantees the reliable reorganisation.

This scheme is extensively used in computer graphics, computational geometry and in

numerous other disciplines. Also used in solving numerous nearness problems in the

plane or in 3-D space, for example in finding closest pairs in a set of points,

comparable shapes in a list of shapes, comparable images in an image database, and so

on. In these applications, the set of all inputs is some sort of metric space, and the

hashing function can be interpreted as a dividing wall of that space into a grid of cells.

The table is frequently an array having two or more indices (called a grid file, grid

index, bucket grid, and similar names), and the hash function proceeds an index tuple.

This exceptional case of hashing is known as geometric hashing and sometimes also

called as the grid method.

The Geometric Hashing is the main paradigm for matching of a set of geometric

features against a database as explained above. So very efficient in model based object

recognition in computer vision like CT or MRI images of different persons, matching

35

of an individual fingerprint versus a database, matching the molecular surface of a

receptor molecule against a data base of drugs and so on.

Only when the recognizable database objects have undergone transformations or when

only partial information is present even at that time matching is possible. Also for low

polynomial complexity this technique is highly efficient [21] [22].

3.6.6 Cryptographic hashing

It is the process that takes an arbitrary block of data and precedes a fixed-size bit

string, the hash value, such that an accidental or intentional change to the data will

change the hash value. The data to be encoded is called the "message", and their hash

values are called the message digest or simply digest. Cryptographic hash function

protect the integrity of data instead of protecting the integrity of arbitrary length of

data, the whole emphasis is given to the protection of the integrity of significantly

small bit strings. Therefore the data is hashed onto string or even the Cyclic

Redundancy Checks (CRC). Basically CRC are used for the error detection but here it

is assumed for the malicious and no longer random noise process [24].

The ideal cryptographic hash function has four main properties:

 it is easy to compute the hash value for any given message,

 it is infeasible to find a message that has a given hash,

 it is infeasible to modify a message without changing its hash,

 it is infeasible to find two different messages with the same hash.

Cryptographic hash functions have many information security applications, details are

given below –

 in digital signatures,

 message authentication codes (MACs)

 And also in other forms of authentication.

Ordinary hash functions can also be used, to index data in hash tables; as fingerprints,

for the detection of duplicate data or uniquely identify files; or as checksums for the

detection of accidental data corruption. Also in information security contexts,

36

cryptographic hash values are sometimes called (digital) fingerprints, checksums, or

just hash values, even though all these terms stand for functions with rather different

properties and purposes.

Some minimum properties that a cryptographic hash function must have are:

 Preimage resistance: (One -way)

given a hash h it should be hard to find any message m such that h = hash (m).

This concept is related to that of one way function. Functions that lack this

property are vulnerable to preimage attacks.

 Second preimage resistance(Weak Collision Resistance)

 given an input m1, it should be hard to find another input, m2 (not equal to m1)

such that hash(m1) = hash(m2). This property is sometimes referred to as weak

collision resistance. Functions that lack this property are vulnerable to second

preimage attacks.

 Collision resistance(Strong Collision resistance)

 it should be hard to find two different messages m1 and m2 such that hash

(m1) = hash (m2). These type of pair is called a (cryptographic) hash collision, and

this property is referred to as strong collision resistance. It requires a hash value at

least twice as long as what is required for preimage-resistance, otherwise

collisions may be found by a birthday attack.

These properties imply that not even a malicious adversary can replace or modify the

input data without changing its digest. Thus, if two strings have the same digest, one

can be very confident that they are identical [36].

3.6.7 Robust Hashing

 Robust Audio Hashing

Previously it was made for précis a long audio signal into a concise signature

sequence that can be easily used to identify the original record. The output sequence is

37

denoted in the literature by alternate names, such as signature, fingerprint or

perceptual hash values of the input that‟s called the robust audio hashing. The

mapping tool of audio input to the signature is called perceptual hash function. Audio

hashing methods were tested, to measure for robustness via non-malicious signal

processing attacks on the one hand and to assess the uniqueness or randomness of the

hash when audio files with different content [26].

 Robust Image Hashing

Basically it is related to cryptographic hash functions and it is sensitive only to

perceptual change. Sign bit from the domain of Discrete Cosine Transform (DCT) s

the basic concept for robust image hashing image robust hashing which is widely used

in image processing and video processing, e.g. for compression or digital

watermarking. The sign bit of this feature vector is extracted to form an intermediate

hash. To derive a final hash the intermediate hash can be incorporated into some

security mechanism. The advantages of the sign signal in DCT domain are verified in

experiments evaluating robustness.

It is easy to be incorporated into image and video compression and watermarking due

to the implementation in DCT domain. But subscriber cannot significantly alter some

files without sacrificing the quality or utility of the data. This can be true of various

files including image data, audio data, and computer code [27].

3.6.8 Bloom Filters

It allows for the state of existence of a very large set of likely type values to be

represented with a comparably smaller piece of memory. Through the use of multiple

distinct hash functions it can be achieved. And by allowing the result of a query for

the subsistence of a particular type to have a certain quantity of fault. By varying the

size of the table used for the Bloom filter and also by varying the number of hash

functions this error can be controlled [28][29][30].

Some network-related applications in which bloom filters are used:

• Collaborating in overlay and peer-to-peer networks: Bloom filters can be used for

summarizing content to aid collaborations in overlay and peer-toper networks.

• Resource routing: Bloom filters allow probabilistic algorithms for locating resources.

38

• Packet routing: Bloom filters provide a means to speed up or simplify packet routing

protocols.

• Measurement: Bloom filters provide a useful tool for measurement infrastructures

used to create data summaries in routers or other network devices.

3.6.9 String Hashing

String Hashing is fundamental operation which is widely used in applications where

speed is critical. It is the process of reducing a pseudo- random number in specified

range.

Following uses are given below of String Hashing-

 It is used in so many applications where fast access to distinct strings is

required.

 It is mostly used for the data storage access and mainly within indexing of data

and as a structural back end to associative containers (i.e.: hash tables)

 One more use of it is in spell checking [31].

39

CHAPTER 4

Choosing Best Hashing Strategies and Hash Function

Hash tables offer the much better results for constant-time searching of a large

collection of data as compared to balanced binary search trees, which can be searched

in O (log n) time. So for the larger data sets its better to use hashing. But hashing is

not a strategy to be employed lightly. If it is done well, it can easily outperform most

other data structures in terms of search time; done poorly; its performance can

degenerate to that of a linked list. So it‟s important to use the hashing scheme

carefully. And for this it‟s necessary to choose an effective and efficient hash function

for good use of hashing.

There are two criteria that should be considered when choosing hash functions for

hash table.

1. Functions should be choosed in such a manner that approximate the assumptions of

Simple Hashing i.e. that map roughly equal numbers of keys to each slot in the table

and are unlikely to deviate from this behaviour for keys encountered in practice.

2. If the chosen hash table is open-addressed, it is ensure that the slot sequence for

every key is of maximum length, eventually touching every slot in the table [15].

When a hash table technique is examined, the main characteristics, which are

considered, are generally, in that order:

 the mean number of probes in a successful search (more rarely its standard

deviation, or its full distribution),

 the (mean) number of probes before an unsuccessful search is detected,

 the amount of additional work needed to insert a new item,

 The impact of deleting an existing item, each event (hopefully) less frequent than

the preceding ones.

These characteristics are generally expressed, exactly or approximately, in functions

of “alpha” the load factor of the table. Where load factor is equal to the ratio of the

number of items over the number of entries in the table.

40

So according to our need of problem and need technique can be choosed to avoiding

the collision, which is the main problem of hashing. From all of above studies of the

hashing methods and techniques, hash functions the conclusions come out.

4.1 Comparisons between Linear probing and Double hashing

The choice between linear probing and double hashing depends primarily on the cost

of computing the hash function and on the load factor of the table. Both use few

probes but double hashing take more time because it hashes to compare two hash

functions for long keys.

4.2 Comparisons: Open Addressing verses Separate Chaining

 It‟s somewhat complicated because we have to account the memory usage. Separate

chaining uses extra memory for links. Although the Open Addressing extra memory

implicitly within the table to terminate probe sequence. Open-addressed hash tables

cannot be used if the data does not have unique keys. An alternative is use separate-

chained hash tables.

4.3 Comparisons Table of Open Addressing methods

Linear Probing Quadratic Probing Double hashing

Fastest among three

Easiest to implement and

deploy

Makes more efficient use

of memory

Use few probes

Uses extra memory for

links and it does not probe

all locations in the table.

Use few probes but take

more time.

A problem occurs known

as primary clustering

A problem occurs known

as secondary clustering

More complicated to

implement

Interval between probes is

fixed - often at 1.

Interval between probes

increases proportional to

the hash value

Interval between probes is

computed by another hash

function

Table 4.1: Comparisons Table of Open Addressing methods

41

4.4 Comparisons between the hashing methods:

4.4.1 Chained Hashing. Half of the allocated memory is used for the hash table, and

half for list elements to increasing the performance and avoiding the collision. If the

data structure runs out of free list elements, its size is doubled. We store the first key

of each linked list directly in the hash table, as this often saves one cache miss. Having

the first key in the hash table also slightly improves memory utilization, in the

expected sense. This is because every non-empty linked list is one element shorter and

because we expect more than half of the hash table cells to contain a linked list for the

load factors considered here.

4.4.2 Double Hashing. For preventing the tables from clogging up with deleted cells,

resulting in poor performance for unsuccessful lookups, all keys are rehashed when

keys and “deleted” markers occupy 2/3 of the hash table. The fraction 2/3 was found

to give a good trade off between the time for insertion and unsuccessful lookups.

4.4.3 Linear Probing. Hashing with linear probing was the best performer in terms of

both time and space on all architectures. The reason for the space advantage is

straightforward by have only one level of tables instead of two. And has was

considerably faster, as far fewer rehashes were needed.

4.4.4 Coalesced chaining. This strategy is effective, efficient, and very easy to

implement. Although sometimes the extra memory use might be prohibitive and for

this problem the most common alternative is open addressing, but still its

disadvantage is that it decreases the performance. More specifically, open addressing

has the problem of primary and secondary clustering, where there are long sequences

of used buckets, and extra time is needed to calculate the next open bucket for a

collision resolution.

So to conquer the difficulty of clustering solitary solution can be coalesced hashing.

Coalesced hashing uses a parallel technique as used in separate chaining, but in its

place of allocating new nodes for the linked list, buckets in the table are used. The

initial unfilled bucket in the table is considered a collision bucket. It avoids the

property of primary and secondary clustering, and as a consequence, advantage of the

capable search algorithm for separate chaining. As in open addressing, deletion from a

42

coalesced hash table is awkward and potentially expensive, and resizing the table is

terribly expensive and should be done rarely, if ever [8].

4.4.5 Cuckoo Hashing. Here the two memory accesses are used in lookups. After the

first memory lookup becomes unsuccessful hashing is done by the second hash

function. Cuckoo hashing is much faster than chained hashing for small, cache-

resident hash tables. Also the bucketized versions of cuckoo hashing are much faster

than conventional methods also for large hash tables, when space utilization is high

[14].

4.4.6 Two-Way Chaining. For inserting the keys, two independent uniform hash

functions are used and each key is inserted on-line into the shorter chain, with ties

broken down indiscriminately. The insertion time is still made constant, while the

average search time cannot be more than twice of the average search time of

conventional uniform hashing. Two-way chaining theory can be effectively used in

obtaining many efficient algorithms the .It is somewhat nearer to cuckoo hashing but

it is able to achieves constant worst-case insertion time, deterministically, and

constant worst-case search time asymptotically almost definitely, when the load factor

is made stable. Here the space consumption is linear as well.

 After considering all the hashing methods any their strategy the common parameter

comes out is space-time trade-off .It can be applied to all the problem of data storage,

which the main building block for the hashing. So if we study about the data storage it

will found that that if data is stored uncompressed, it takes more space but less time,

than if the data were stored compressed (since compressing the data reduces the

amount of space it takes, but it takes time to run the compression algorithm).

Depending on the particular instance of the problem, either way is practical. Another

example is displaying mathematical formulae on primarily text-based websites, such

as Wikipedia. Storing only the Latex source and rendering it as an image every time

the page is requested would be trading time for space - more time used, but less space.

Rendering the image when the page is changed and storing the rendered images would

be trading space for time - more space used, but less time. Also there are rare

instances where it is possible to directly work with compressed data, such as in the

43

case of compressed bitmap indices, where it is faster to work with compression than

without compression.

For good hash table performance a good hash function is essential. So good hash

function should be able to make a tradeoffs between time and space. A poor choice of

a hash function can lead to clustering, in which probability of keys mapping to the

same hash bucket (i.e. a collision) is significantly greater than would be expected from

a random function. A nonzero collision probability is practically impossible in any

hash implementation, but it can be avoided or decreased. In addition, some hash

functions are computationally expensive, so the amount of time (and, in some cases,

memory) taken to compute the hash may be burdensome.

The most important thing in choosing a hash function is to make sure that it evenly

spreads the space of possible keys onto the set of indices for the hash table. Secondly,

it is advantageous if clusters in the space of possible keys are broken up so that we are

likely to get a `continuous run'. Therefore, it is never a good idea to make the last (or

even the first) few characters decisive, when defining hash functions of strings of

characters. In order to avoid primary clustering, for choosing secondary hash

functions, it has to make sure that different keys with the same primary position give

different results when the second hash function is applied. Also one has to be careful

to ensure that the second hash function cannot result in a number which has a non-

trivial common divisor with the size of the hash table: Like for example if the hash

table has size 10, and we get a second hash function which gives 2 as a result, then

only half of the locations will be checked, which might result in failure (an endless

loop, for example) while the table is still half empty. A simple way to avoid this is,

always make the size of the table a prime number.

4.5 What Constitutes a Good Hash Function?

Before concluding further about hashing, consider in more detail the issue of choosing

a hash function to perform the address calculations for a given application. However,

this section presents a brief summary of the major concerns.

• A hash function should be easy and fast to compute.

If a hashing scheme is to perform table operations almost instantaneously, you

certainly must be able to calculate the hash function rapidly. Most of the common

44

hash functions require only a single division (like the modulo function), a single

multiplication, or some kind of "bit-level" operation on the internal representation of

the search key. In all these cases, the requirement that the hash function be easy and

fast to compute is satisfied.

• A hash function should evenly scatter the data throughout the hash table.

No matter what hash function you use, there is in general no way to avoid collisions

entirely. (Of course, a perfect hashing function avoids collisions.) For example, to

achieve the best performance from a separate chaining scheme should contain

approximately the same number of items on its chain; that is, each chain should

contain approximately N/Table Size items (and thus no chain should contain

significantly more than N/Table Size items). To accomplish this goal, your hash

function should scatter the search keys evenly throughout the hash table.

We cannot avoid collisions entirely [18].

Some more issues can be considered regarding a good hash function that is:

• Issues to consider with regard to how evenly a hash function scatters the search keys

 How well does the hash function scatter random data?

 How well does the hash function scatter non-random data?

•General requirements of a hash function

 The calculation of the hash function should involve the entire search key

 If a hash function uses modulo arithmetic, the base should be prime

4.6 Universal Hashing

Universal hashing is used widely in many computer science applications, for example

in cryptography and in implementations of hash tables. Since in universal hashing the

function is randomly choosed, there is some adverse hoping to create many hash

collisions is unlikely to succeed [17].

4.7 Hashing with Polynomials

Basically it is the potential mathematical principles and structures that can provide the

foundation for cryptographic hash functions, and also present a simple and efficiently

computable hash function based on a non-associative operation with polynomials over

a finite field of characteristic.

45

On the positive side, it is found that cubic hash functions are reliable. In a more

general setting, higher degree of the polynomial hash functions translates into higher

reliability. The reliability results and the new class of hash functions are used for some

fundamental applications: improved and simplified reliable algorithms for perfect

hash functions and real-time dictionaries, which use significantly less random bits,

and tighter upper bound for the program size of perfect hash functions. Hash functions

are easy-to-compute compression functions that take a variable length input and

convert it to a fixed-length output. Hash functions are used as compact

representations, or digital fingerprints, of data and to provide message integrity [13].

 4.8 Cascade Hashing

Cascade Hashing is a new dynamic hashing scheme that depends upon spiral storage.

Actually multilevel double hashing schemes called cascade hashing. They use several

levels of hash tables. In each table, we use the common double hashing scheme.

Higher-level hash tables work as fail-safes of lower level hash tables. By this strategy,

it could effectively reduce collisions in hash insertion. Thus it gains a constant worst-

case lookup time with a relatively high load factor (70%-85%) in random

experiments. Different parameters of cascade hash tables are tested [20].

4.9 Cuckoo Hashing

The main concept behind this cuckoo hashing is to use two hash functions instead of

only one. This locates two possible locations for each key in the hash table. To utilize

a larger part of the capacity of the hash table efficiently while sacrificing some lookup

and insertion speed generalizations of cuckoo hashing that uses more than 2

alternative hash functions can be expected. The use of just three hash functions

enhances the load to 91%. The next generalization of cuckoo hashing consists in using

more than one key per bucket. Using just 2 keys per bucket allows the load factor

above 80% [34] [35].

The basic Cuckoo Hashing properties are:

 Simple implementation.

 Lookups using two probes (optimal).

 Efficient in the average case.

46

 A practical, provably good hash function family is not known.

4.10 Geometric Hashing

Geometric hashing is used in telecommunications (usually under the name vector

quantization) to encode and compress multi-dimensional signals. The Geometric

Hashing paradigm for matching of a set of geometric features against a database of

such feature sets.

It is used in computer vision for matching geometric features against a database of

such features, finds use in a number of other areas. When the recognizable database

objects have undergone transformations or when only partial information is present

even at that time matching is possible. For low polynomial complexity this technique

is highly efficient [21][22].

4.11 Cryptographic Hashing

The ideal cryptographic hash function has four main properties:

 it is easy to compute the hash value for any given message,

 it is infeasible to find a message that has a given hash,

 it is infeasible to modify a message without changing its hash,

 it is infeasible to find two different messages with the same hash.

Cryptographic hash functions can be used in many information security applications,

especially in digital signatures, message authentication codes (MACs), and other

forms of authentication. to index data in hash tables; as fingerprints, to detect

duplicate data or uniquely identify files, they can also be used as ordinary functions.

Also as checksums to detect accidental data corruption these cab be good option.

Indeed, in information security contexts, cryptographic hash values are sometimes

called (digital) fingerprints, checksums, or just hash values, even though all these

terms stand for functions with rather different properties and purposes.

4.12 Robust Hashing

Mainly robust hashing can be in mainly two fields that are in audio as well as in

images too. So robust hashing is considered in two forms:

47

4.12.1 Robust Audio Hashing

It was made for précis a long audio signal into a concise signature sequence that can

be used to identify the original record. The output sequence is denoted in the literature

by alternate names, such as signature, fingerprint or perceptual hash values of the

input that‟s called the robust audio hashing [26].

4.12.2 Robust Image Hashing

Sign bit from the domain of Discrete Cosine Transform (DCT) s the basic concept for

robust image hashing. This technique is widely used in image processing and video

processing, e.g. for compression or digital watermarking.

It is easy to be incorporated into image and video compression and watermarking due

to the implementation in DCT domain. But subscriber cannot significantly alter some

files without sacrificing the quality or utility of the data. This can be true of various

files including image data, audio data, and computer code [27].

4.13 Bloom Filters

Bloom filter technique of hashing finds several applications, such as in efficient

maintenance of differential files, space efficient storage of dictionaries, and parallel

free-text searching It allows for the state of existence of a very large set of possible

type values to be represented with a much smaller piece of memory. Through the use

of multiple distinct hash functions it can be achieved. Bloom filters have a strong

advantage over other data structures that is space, for representing sets, such as self-

balancing binary search trees, tries, hash tables, or simple arrays or linked lists of the

entries. Most of these require storing at least the data items themselves, which can

require anywhere from a small number of bits, for small integers, to an arbitrary

number of bits, such as for strings. One unusual property of bloom filter is that the

time needed to either add items or to check whether an item is in the set is a fixed

constant, completely independent of the number of items already in the set. No other

constant-space set data structure has this property, but the average access time of

sparse hash tables can make them faster in practice than some Bloom filters

[28][29][30].

48

4.14 String Hashing

String Hashing is a fundamental operation used in many applications where fast

access to distinct string is required. String hashing is the process of reducing a pseudo-

random number in specified range. It is fundamental operation, which is widely used

in applications where speed is critical. One more use of it is in spell checking [31].

4.15 Best suited Hashing technique for a particular problem

Problems solved by hashing Various types of Hashing

used

1. For traditional databases or in access method. The

basic purpose of access methods is to retrieve and

update data efficiently. Especially when record has

to be retrieved in exactly one disk access [16][33].

Dynamic hash functions

2. Password verification related applications. To

authenticate a user, the password presented by the

user is hashed and compared with the stored hash.

This is sometimes referred to as one-way

encryption [23].

For verification of message integrity. Determines

whether any changes is to a message (or a file), by

comparing message digests calculated before, and

after, transmission [24].

For message digest for reliably identifying a file:

several source code management systems,

including Git, Mercurial and Monotone to

uniquely identify them [25].

For security and performance reasons: most digital

signature algorithms specify that only the digest of

the message be "signed", not the entire message.

Hash functions can also

Cryptographic hash

functions

3. Problems like in computer graphics, computational

geometry and many other disciplines. In these

applications hashing function can be interpreted as

a partition of that space into a grid of cells [21].

Problems of computer vision and structural

alignment of proteins [22].

Geometric hash functions

[Note: The technique is

highly efficient and of low

polynomial complexity.]

4. Problems related with content-based retrieval,

monitoring, and filtering [27].

Robust hash functions

[Robust image hashing]

49

Problems of image processing and video

processing, e.g. for compression or digital

watermarking [27].

In authentication of both video data and still

images and for integrity verification of visual

multimedia [27].

5. Problems of most audio content identification

systems [26].

For identification of the original record:

summarizing a long audio signal into a concise

signature sequence, which can then be used for

identifying [26].

Robust hash functions

[Robust Audio Hashing]

6. Used in Web cache sharing: Collaborating Web

caches use Bloom filters which make compact

representations for the local set of cached files.

Each cache periodically broadcasts its summary to

all other members of the distributed cache [28].

Used in Query filtering and routing: The Secure

wide-area Discovery Service, subsystem of Ninja

project, organizes service providers in a hierarchy.

Bloom filters are used as summaries for the set of

services offered by a node [29].

Used in Compact representation of a differential

file: a batch of database records are put in

differential file contains to be updated.

Used in Free text searching: Basically, the set of

words that appear in a text is succinctly represented

using a Bloom filter [30].

For classification of various kinds of automobiles,

for the purpose of re-detection in arbitrary scenes.

The level of detection can be varied from just

detecting a vehicle, to a particular model of

vehicle, to a specific vehicle.

Bloom hash functions

7. Mainly within indexing of data and as a structural

back end to associative containers (i.e.: hash tables)

[31].

It uses special hash function for finding correct

subtitles.

Used in spell checking.

String hash functions

Used in the area of data

storage access

50

8. For the same theoretical properties as the classic

dictionary a new hashing scheme called Cuckoo

Hashing is used which is much more efficient than

the traditional one. It combines the main two

features speed with a reasonable space usage in

more efficient manner [34].

Cuckoo Hashing

Table 5.2: Best suited Hashing technique for a particular problem

51

CHAPTER 5

Results and Conclusion

5.1 Results

After analysing all the methods and technique the results come out. Firstly we

discussed the dynamic hashing scheme, which has an additional advantage that any

record can be retrieved in exactly one disk access. It is used for traditional databases

or in access method. The basic purpose of access methods is to retrieve and update

data efficiently .So mainly in dictionaries where we need our results in one access we

use this dynamic hashing scheme. The most efficient schemes in this class are linear

hashing. But beyond this it has a fixed retrieval speed and the storage utilization is to

be selected by the user. So mainly used in databases.

When we talked about the Cryptographic hash functions they are mainly used for the

security reasons like information security applications, notably in digital signatures,

message authentication codes (MACs), and other forms of authentication. As its major

applications are Password verification related applications and to authenticate a user,

the password presented by the user is hashed and compared with the stored hash. This

is sometimes referred to as one-way encryption .For verification of message integrity

cryptography can be used and determines whether any changes applied to a message

or not, by comparing message digests calculated before, and after, transmission. It also

used for message digest to identify a file in several source code management systems

with reliability. Security and performance reasons like most digital signature

algorithms specify that only the digest of the message be "signed", not the entire

message. So it is concluded that cryptography is used for the problems in which

security is the main concern.

Geometric hash functions are mainly developed in computer vision for matching

geometric features against a database of having same features. Matching is possible

only when partial information is present or the object recognisable database is

transformed to some extent. The mostly computer vision research are done by the

object recognization. For reorganizing an object, “object reorganization system” is

developed so that it can be able to find the partially occlude object. So being above

52

reasons it can be used in problems like computer graphics, computational geometry

and many other disciplines. In these applications hashing function can be interpreted

as a partition of that space into a grid of cells or problems of computer vision and

structural alignment of proteins.

Robust hash functions basically used in audio content identification systems as well as

in image processing and video processing e.g. for compression or digital

watermarking. Basically Robust image hashing is associated to cryptographic hash

functions and it is responsive only to perceptual modifications and used in image

processing and video processing, such as for compression or digital watermarking.

Sign bit from the domain of Discrete Cosine Transform (DCT) s the basic concept for

robust image hashing. Image hashing is also acknowledged as content-based digital

signature, perceptual hashing, soft hashing, robust hashing, or image fingerprinting.

The extracted hash could be used as a conventional digital signature, such as for

authentication and tamper detection. The method gives good results but it depends on

the intensity of the image. The reason of image hashing is the content classification.

So it has to discriminate diverse content items. For implementing this objective

discriminability of image hashes is essential to. The discriminability depends on the

length of the considered hashes. The next significant factor influencing the

discrimination is distance metric. The major three properties necessary for image

hashing are: Robustness, Discriminability, and Security.

Robust audio hashing is based on a concise description of the time-frequency

characteristics. It summarizes a long audio signal into a concise signature sequence,

which is used to identify the original record. Robust hashing finds applications in

database searching, broadcast monitoring, tamper proofing, data content

authentication etc. For example, in database searching and broadcast monitoring,

instead of comparing the whole sample set, hash sequence would suffice to identify

the content. One more important application of this is in watermarking, where a

content-dependent signature, coupled with ownership label is embedded in the

document. This type of watermarking is resistant, among other things, to copy attack.

For database applications bloom filters are used very efficiently and in recent years

they so become popular in the networking literature. A Bloom filter is a simple space-

efficient randomized data structure for representing a set in order to support

53

membership queries. Bloom filters are used as summaries for the set of services

offered by a node. So the problems in which it is beneficial to use bloom filters are

web cache sharing, collaborating .Web caches use Bloom filters, which make compact

representations for the local set of cached files. Each cache periodically broadcasts its

summary to all other members of the distributed cache. Problems like query filtering

and routing also use this technique. Bloom filters are used as summaries for the set of

services offered by a node. Compact representation of a differential file is also one of

an important use of it where a batch of database records are put in differential file

contains to be updated. Free text searching is also a main implementation of bloom

filter. Basically, the set of words that appear in a text is succinctly represented using a

Bloom filter. It is also used for classification of various kinds of automobiles, for the

purpose of re-detection in arbitrary scenes. The level of detection can be varied from

just detecting a vehicle, to a particular model of vehicle, to a specific vehicle.

Network-related applications are also one application of this. String Hashing is a

fundamental operation used in many applications where fast access to distinct string is

required. It is used in the area of data storage access like mainly within indexing of

data and as a structural back end to associative containers. It uses special hash

function for finding correct subtitles. String hashing is the process of reducing a

pseudo- random number in specified range. It is fundamental operation, which is

widely used in applications where speed is critical. One more use of it is in spell

checking.

So from above discussion it is observed that for the different problems we need to

choose a hash function which is most perfect to the problem and most efficient, like in

databases we must choose the dynamic hashing especially when record must be

retrieved exactly in one access and for security and performance reasons like message

integrity, password verification one should go with the cryptographic hashing

Similarly for image processing and for authentication for a video or a still image we

go with the robust hashing is picked. Problem likes free text searching and

redetection can be resolved by bloom hashing and for indexing of data string hashing

will be most suitable. String hashing can solve problems like spell checking.

54

5.2 Conclusions

After the detailed study of hashing strategies and hash functions it is concluded that

choosing a best hashing strategies and hash functions is purely concerned to the given

problem. Choosing an effective hash function for a specific application is more an art

than a science. So regarding to our problem we can choose the best-suited technique

or hash function considering the above properties and the problems in which these

techniques are used. We consider the problem and hashing strategies, then firstly we

see the requirements of our problem, then we choose the best hashing technique. For

example if we have less memory we cannot go with the separate chaining or the

quadratic probing, it is advisable to choose linear probing. But if this constraint of less

memory space is not there then we can go with the quadratic probing or the double

hashing but again the double hashing become more complicated like we need few

more probes required for it and hence more time will be consumed. If we consider the

coalesced chaining, this strategy is effective, efficient, and very easy to implement,

but however, sometimes the extra memory use might be prohibitive. And for this the

most common alternative is open addressing, it degrades the performance to some

extent. More specifically, open addressing has the problem of primary and secondary

clustering.

Similarly choosing the best hash function a same criterion is considered like what is

required and what kind of constraints we are having in our problem. For example if

we are having problems like password verification, authenticate a user , verification

of message integrity :determines whether any changes is to a message, for security and

performance reasons, for message digest for reliably identifying a file: several source

code management systems all problems related to network security we must use the

cryptographic hash functions. For the problems like in computer graphics,

computational geometry and many other disciplines geometric hash functions are best

suitable. Also for the computer vision and structural alignments of proteins it can be

used. Web cache sharing in which web caches, which uses bloom filters which make

compact representations for the local set of cached files, in query filtering and routing,

in Free text searching, for classification of various kinds of automobiles, for the

purpose of re-detection in arbitrary scenes we cannot use such cryptography we

should go with the other hashing function such as the bloom filters, it collaborate Web

55

caches which make compact representations for the local set of cached files. Each

cache periodically broadcasts its summary to all other members of the distributed

cache. Similarly string hash functions are used in the problems of spell checking and

mainly within indexing of data and as a structural back end to associative containers.

Basically string hash functions are used in the area of data storage access where fast

access to distinct strings is required. For the problems related with content-based

retrieval, monitoring, and filtering or the for compression or digital watermarking

basically for the image processing and video processing we need the another type of

hashing function called the Robust hash functions. [Robust image hashing]

 This type of hashing function also solves the problems regarding the authentication of

both video data and still images and for integrity verification of visual multimedia.

Similarly for the most audio content identification systems robust hash function is

used but this time robust audio hashing is beneficial. It is also good for summarizing a

long audio signal into a concise signature sequence and its identification of the

original record .For very simpler problems like for traditional databases or in access

method we can easily go with the dynamic hash function. The basic purpose of access

methods is to retrieve and update data efficiently. Especially when record has to be

retrieved in exactly one disk access. But if we need much more efficient than the

traditional one then we can choose cuckoo hashing having the same theoretical

properties as the classic dictionary but combines the main two features speed with a

reasonable space usage in more efficient manner.

So from above conclusion it can be seen very easily that choosing any hashing scheme

or the hash function is entirely the matter of our need and requirements with the

consideration of our boundation provided. Means it‟s the choice of our requirements.

56

ANNEXURE I

References

1. Henry M. Walker, „Abstract Data Types‟, Clarendon Press, 1988,4
th

 Edition,

Pg 129-143

2. Thomas H. Coremen, Charles E. Leiserson, Ronald L. Stein, “Introduction to

Algorithms”, 2
nd

 edition, PHI, Pg 367,299,245,237,422,224,230

3. Robert Sedgewick,. Addison- Wesley, “Algorithms in C”, 3rd edition,

1998,Chapter 14.

4. Josef Pieprzyk, Thomas Hardjono, Jennifer Seberry, “Fundamentals of

computer security”,Spinger, Pg 242-285

5. J. Zobel, S. Heinz, and H.E. Williams, “In-memory Hash Tables for

Accumulating Text Vocabularies”, Information Processing Letters, 271-277,

December 2001

6. Mahima Singh, Deepak Garg, “Choosing Best Hashing Strategies and Hash

Functions” ,IEEE International Advance Computing Conference (IACC‟09)

March 6-7 , 2009, Thapar University , Patiala.

7. Michael Main, “Data structures & other objects using Java”, Addison Wesley,

1999 Original from the University of Michigan Digitized Nov 17, 2007

8. Richard Wiener, Lewis J. Pinson , “Fundamentals of OOP and data structures

in Java” ,Cambridge University Press, 367-393

9. Dinesh P. Mehta, Sartaj Sahni , “Handbook of data structures and

applications” ,CRC Press , Pg 1392.

10. Josef Pieprzyk, Babak Sadeghiyan, “Design of hashing algorithms” , Springer-

Verlag, 1993 Original from the University of Michigan Digitized Nov 20,

2007

11. Yedidyah Langsam, Moshe J. Augenstein, Aaron M. Tenenbaum, “Data

Structures Using C and C++”,2
nd

 Edition, Prentice Hall, 1996

12. Roy S. Ellzey , “Data structures for computer information systems”, Science

Research Associates, 1982 Original from the University of Michigan Digitized

Nov 19, 2007,Pg 166

57

13. Crosby and Wallach's , “Denial of Service via Algorithmic Complexity

Attacks”, Computational science and its applications: ICCSA 2006 ,

international conference, Glaskow, UK,

14. Frank Dehne, Jörg-Rüdiger Sack, Michiel Smid “Data Structure and

Algorithms in java”,Springer

15. Michael B. Feldman , “Data Structure with ADA” , Reston Pub. Co., 1985

Original from the University of Michigann Digitized Jan 23, 2007, Pg 244

16. Fl J. Enbody H. C. Du , “Dynamic Hashing Schemes”, High performance

computing for computational science, Vecpar 2002

17. Askitis, Nikolas (2009), "Fast and Compact Hash Tables for Integer Keys",

Proceedings of the 32nd Australasian Computer Science Conference (ACSC

2009) 91

18. Paul Helman, Robert Veroff, Frank M. Carrano, Frank R. Carrano,

“Intermediate Problem Solving and Data Structure‟, 2
nd

 Edition,

Benjamin/Cummings

19. Donald Ervin Knuth, “The Art of Computer Programming: Fundamental

algorithms”, Addison-Wesley, 1997

20. Peter Kjel lberg and Torben U. Zahle , “Cascade Hashing”, Computer Science

Department, University of Copenhage

21. Haim J Wolfson , “Geometric Hashing An Overview” ,Tel Aviv

University,Isidore Rigoutsos , IBM T.F. Watson Research Center

22. Chan-Yong Park, Sung-Hee Park, Dae-Hee Ki1, Soo-Jun Park,Man-Kyu Sung,

Hong-Ro Lee, Jung-Sub Shin, and Chi-Jung Hwang, “Fast Protein Structure

Alignment Algorithm Based on Local Geometric Similarity”

23. Mihir Bellare and Ran Canetti and Hugo Krawczyk. , “Keying Hash Functions

for Message Authentication”, Springer-Verlag

24. Serge Vaudenay, “A Classical Introduction to Cryptoghaphy”,Springer,Pg 63

25. “Mihir Bellar and Ran Canetti, Hugo Krawczyk, “Keying Hash Function for

Message Authentication”, Springer

26. Hamza Özer, Bülent Sankur, Nasir Memon, “Robust audio hashing for Audio

Identification”, EUSIPCO 2004 (XII European Signal Processing

conference),Sept 6-10,2004,Vienna,Austria.

58

27. Sign,Longjiang Yu and Shenghe Sun, “Image Robust Hashing based on DCT‟,

IIH-MSP‟06,International Conference on Intelligent Information Hiding and

multimedia Signal Processing.

28. E. Papapetrou, E. Pitoura , and K. Lillis , “Speeding –up Cache Lookups in

Wireless Ad-Hoc Routing Using Bloom Filters”, the 16th Annual International

Symposium on Personal Indoor and Mobile Radio Communications (PIMRC

2005), Sept 11-13, 2005, Berlin, Germany,2005.

29. Andrei Broder, Michael Mitzenmacher, “Network Applications of

BloomFilters: A Survey”, Internet Math 1(2003), no.4, 485-509

30. M.V. Ramakrishna, „Practical Performance of Bloom Filters and Parallel” , 6
th

International Conference on Distributed and Parallel Computing.

31. M V Ramakrishna,Justin Zobel , “Performance in Practice of String Hash

Function‟, International Conference on Database Systems for Advanced

Applications‟97 .

32. Ketan Dalal, Luc Devroy, Ebrahim Malalla and Erin Mcleish, “Two way

chaining with Reassignment”

33. Per-Ake, Per-Åke Larson, “Linear Hashing with Separators-A Dynamic

Hashing Scheme Achieving One-Access Retrieval”, University of Waterloo,

Computer Science Dept., 1984

34. Rasmus Pagh Flemming Friche Rodler , “Cuckoo Hashing”,9
th

 Annual

European Symposium on Algorithms ,ESA 2001,Denmark.

35. Rasmus Pagh “Cuckoo Hashing for Undergraduates”, IT University of

Copenhagen,March 27, 2006

36. http://www.inf.ed.ac.uk/teaching/courses/cs/0708/lecs/hashfuncs-6up.pdf.

59

 ANNEXURE II

Appendices

Bloom filter: It is a space-efficient probabilistic data structure that is used to test

whether an element is a member of a set. False positives are possible, but false

negatives are not. Elements can be added to the set, but not removed .The more

elements that are added to the set, the larger the probability of false positives. Bloom

filters are incredibly space-efficient when the number of potential elements in the set

is large. Hash functions are an essential ingredient of the Bloom filter.

Collision: When two keys hash to the same index, an alternate location must be

determined because two records cannot be stored in the same location. The process of

finding an alternate location is called collision resolution.

Cascade Hashing: It is a hashing method which is very effective, efficient, and very

easy to implement. But it uses extra memory. It avoids the effects of primary and

secondary clustering. So it is very good option if large memory is not a problem.

Cuckoo Hashing: It possesses the same theoretical properties as the classic dictionary

but is much simple the space usage is similar to that of binary search trees. A special

feature of our lookup procedure is that there are just two memory accesses, which are

independent and can be done in parallel if this is supported by the hardware. It is very

simple to implement.

Cryptographic Hashing: It is basically used in computer and network security. Like

for Checksums, Authenticating Documents.

CT: geometric hashing uses the curve matching used in CT scans. Computed

tomography (CT) is a medical imaging method employing tomography. Digital

geometry processing is used to generate a three-dimensional image of the inside of an

60

object from a large series of two-dimensional X-ray images taken around a single axis

of rotation.

DTC: A discrete cosine transform (DCT) expresses a sequence of finitely many data

points in terms of a sum of cosine functions oscillating at different frequencies. DCTs

are important to numerous applications in science and engineering, from lossy

compression of audio and images

Hashing: Enables access to table items in time that is relatively constant and

independent of the items.

Hashing is a method to store data in an array so that storing, searching, inserting and

deleting data is fast. For this every record needs an unique key. The basic idea is not

to search for the correct position of a record with comparisons but to compute the

position within the array.

Hash Function: Maps the search key of a table item into a location that will contain

the item!

These well-defined procedure or mathematical function which converts a large,

possibly variable-sized amount of data into a small datum, usually a single integer that

may serve as an index into an array. The values returned by a hash function are called

hash values, hash codes, hash sums, or simply hashes.

Hash Table: An array that contains the table items, as assigned by a hash function

 a hash table or hash map is a data structure that uses a hash function to efficiently

map certain identifiers or keys (e.g., amit) to associated values (e.g., their telephone

numbers). The hash function is used to transform the key into the index (the hash) of

an array element where the corresponding value is to be sought. Also hash table is a

storage location in memory or on disk that records the hashed values created by the

hashing algorithm

Load Factor: the ratio n/s between n and the size s of its bucket array where n is the

number of stored entries in the hash table. The performance of most collision

resolution methods depends on this load factor.

61

MAC: A MAC is an Authentication tag (also called a checksum) derived by

application of an authentication scheme, together with a secret key, to a message.

MACs are computed and verified with the same key so the intended receiver, unlike

digital signatures, can only verify them. MACs can be derived from various

cryptographic techniques.

MRI: Magnetic Resonance Imaging (MRI), or nuclear magnetic resonance imaging

(NMRI), is primarily a medical imaging technique most commonly used in radiology

to visualize the internal structure and function of the body. The hashing technique is

used in MRI.

Perfect Hashing: It guarantees that you for no collisions at all. It is possible when you

know exactly what set of keys you are going to be hashing when you design your hash

function. It's popular for hashing keywords for compilers.

Peer to Peer network: In its simplest form, a peer-to-peer (P2P) network is created

when two or more PCs are connected and share resources without going through a

separate server computer.

Robust Image Hashing: Image robust hashing is related to cryptographic hash

function. In contrast to cryptographic hash functions this robust digest is sensitive

only to perceptual change Image robust hashing is used in content-based retrieval,

monitoring, and filtering

Robust Audio Hashing: These hash functions are based on a concise description of

the time-frequency characteristics and used in audio content identification.

String Hashing: It is used where fast access to distinct strings is required. String

hashing is the process of reducing a pseudo- random number in specified range. It is

fundamental operation, which is widely used in applications where speed is critical.

One more use of it is in spell checking.

Web Cache: It is the caching of web documents (e.g., HTML pages, images) in order

to reduce bandwidth usage, server load, and perceived lag. A web cache stores copies

62

of documents passing through it; subsequent requests may be satisfied from the cache

if certain conditions are met.

63

ANNEXURE III

List of Publications

[1] Mahima Singh, Dr. Deepak Garg, “Choosing Best Hashing Strategies and Hash

Functions”, International Advance computing conference (IACC‟09), March 2009 at

Thapar University, Patiala.

